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Abstract

Genome-wide association studies (GWAS) provide biological insights into disease onset and 

progression and have potential to produce clinically useful biomarkers. A growing body of GWAS 

focuses on quantitative and transdiagnostic phenotypic targets, such as symptom severity or 

biological markers, to enhance gene discovery and the translational utility of genetic findings. 

The current review discusses such phenotypic approaches in GWAS across major psychiatric 

disorders. We identify themes and recommendations that emerge from the literature to date, 

including issues of sample size, reliability, convergent validity, sources of phenotypic information, 

phenotypes based on biological and behavioral markers such as neuroimaging and chronotype, 

and longitudinal phenotypes. We also discuss insights from multi-trait methods such as genomic 

structural equation modelling. These provide insight into how hierarchical ‘splitting’ and 

‘lumping’ approaches can be applied to both diagnostic and dimensional phenotypes to model 

clinical heterogeneity and comorbidity. Overall, dimensional and transdiagnostic phenotypes have 

enhanced gene discovery in many psychiatric conditions and promises to yield fruitful GWAS 

targets in the years to come.

The field of molecular psychiatric genetics has made enormous advances in the last 

decade, predominantly through large-scale case-control genome-wide association studies 

(GWAS)1-7. GWAS have catalyzed genetic discovery by identifying hundreds of replicable 

molecular genetic markers associated with mental health conditions. The findings provide 

insights into the molecular basis of complex traits, downstream biological processes, and 

genetic architecture of psychiatric conditions. Summary statistics from GWAS allow for the 

estimation of genetic correlations among an array of traits and disorders and the calculation 

of polygenic scores (PGS), which enable the investigation of the correlates and sequelae of 

genetic risk.

Most of the progress to date has been achieved using GWAS dependent on binary, 

case-versus-control analyses embedded within traditional diagnostic classification systems. 

Obtaining large sample sizes is critical to increasing GWAS power, and a case-control 

design is well-suited for attaining and mega-analyzing large samples from electronic 

medical records, direct-to-consumer genetic testing, and other sources. As effective 

as this approach has been, the single nucleotide polymorphisms (SNPs) identified 

by the most recent diagnostic GWAS explain relatively little of the heritability of 

psychopathology (e.g., approximately 8% for major depressive disorder (MDD)8 and 
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24% for schizophrenia9). One approach to discovering unique genetic variants associated 

with psychopathology has focused on incorporating novel phenotypes. Quantitative and 

transdiagnostic approaches to phenotype measurement—including but not limited to 

symptom severity; personality and behavioral traits; clinical features such as age-at-onset 

and recurrence; ecological momentary and ambulatory assessments utilizing surveys; 

actigraphy and smartphone sensing; and laboratory-based markers from blood tests and 

neuroimaging—can complement insights gained from case-control GWAS to enhance power 

for gene discovery.

The current review focuses on recent developments in dimensional, transdiagnostic, 

and other novel phenotypic definitions in GWAS across all major psychiatric and 

neurodevelopmental disorders. We identify a number of useful properties of quantitative 

phenotypes, including the impact of such phenotypes on statistical power and validity, the 

utility of illness course, informant report, and behavioral and biological phenotypes, and 

the potential of hierarchical ‘splitting’ and ‘lumping’ approaches. Our goal is to appraise 

this evolving literature in psychiatric GWAS, synthesize its accomplishments to date, and 

identify avenues for future research.

Themes in Dimensional and Transdiagnostic GWAS

Sample Size

Gene discovery necessitates large samples, as sample size is one of the most important 

factors determining statistical power in GWAS. Since phenotype operationalization can 

limit sample size—expensive or time-consuming phenotypes being harder to collect 

on large samples—phenotype operationalization can thereby influence statistical power 

for gene discovery10, 11. This issue applies to both case-control (e.g., diagnostic) and 

non-diagnostic dimensional phenotypes, as either can be operationalized in such a way 

as to maximize sample size. While the prototypical diagnostic GWAS uses structured 

interviews administered by trained clinicians, diagnoses abstracted from electronic medical 

records yield large sample sizes and have demonstrated utility as target phenotypes12, 13. 

However, some diagnoses have been shown to be underrepresented in electronic medical 

records14, and optimal clinical diagnoses require trained clinicians and lengthy interviews. 

Conversely, a comprehensive dimensional measure of psychopathology can be collected in 

under one hour15-17. Computer-adaptive methods that select the most appropriate items 

for each individual can further reduce length18. While some quantitative phenotypes 

are costly—for example, imaging phenotypes collected by the ENIGMA consortium 

(N=30,000-50,000)19, 20—many quantitative phenotypes, particularly those evaluating 

symptoms and behaviors, are inexpensive to collect—for instance, self-reported well-being 

(N=298,420)21. Ascertaining large, representative samples is challenging, regardless of 

phenotype. However, for a given amount of money, time, and other resources, a carefully-

designed quantitative phenotype may allow for a larger sample than a case-control design. 

In sum, operationalizing phenotypes so as to maximize sample size may improve statistical 

power for gene discovery, assuming phenotypes are equally reliable and valid, assumptions 

we discuss below.
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Reliability

Reliability is a function of how closely scores on a measure match individuals’ true 

standing on the underlying trait. In GWAS, this underlying trait is genetic risk. According 

to the common-disease common-variant framework,22 genetic risk is attributable to many 

small effects, which in aggregate approximate a normal distribution23. If genetic risk is 

continuously distributed, measures that most reliably assess individuals’ standing on that 

continuum should maximize power for gene discovery. In all statistical association tests, 

dichotomizing a continuous variable decreases statistical power24, 25. When a continuous 

trait is dichotomized at the median, the loss of statistical power is equivalent to discarding a 

third of the sample—the loss increases as the cut-point moves away from the median24. 

In their 2010 analysis, Yang, Wray, and Visscher extended findings on the effects of 

dichotomization to simulated GWAS26. Yang and colleagues show that for a given sample 

size drawn from a population-based sample, a quantitative trait will always outperform 

a case-control phenotype in terms of power, as information is always lost when the 

continuous trait is transformed to be binary. This is because the case-control dichotomization 

discards information about severity: an individual with persistent, severe symptoms is 

made statistically equivalent to an individual with mild symptoms that barely surpass the 

diagnostic threshold. As an example, the interrater reliability of dimensional measures of 

positive and negative symptoms of schizophrenia ranges from 0.70 to 0.9227, whereas the 

interrater reliability of schizophrenia in DSM-5 field trails was 0.5028. Similarly, interrater 

reliability for the Hamilton Rating Scale for Depression averages 0.9429, whereas that of 

MDD is only 0.2828. Moreover, dichotomizing questionnaire data into the most and least 

severe scores, without including variability in the middle range, has also been shown to 

reduce GWAS power. Moreover, poor reliability results in diagnostic misclassifications, 

which decrease heritability and inflate genetic correlations between diagnoses30.

Empirical studies corroborate the conclusions from simulations, showing that quantitative 

phenotypes detect more, and more novel SNPs, than case-control phenotypes. Dimensional 

phenotypes identified additional novel significant loci compared with diagnostic phenotypes 

in the two largest PTSD GWAS31, 32. Whereas case-control PTSD GWAS (N=214,408) 

uncovered three loci, fifteen loci were identified using dimensional PTSD phenotypes 

(N=186,689), even with a smaller sample.31 Despite high genetic correlations among 

dimensional, diagnostic, and external PTSD phenotypes, only one of the fifteen loci 

identified in the dimensional GWAS was also identified in the case-control GWAS, 

indicating the dimensional phenotype provided unique information. Likewise, a recent case-

control GWAS of self-reported anxiety diagnosis yielded two significant SNPs (N=224,330), 

whereas a dimensional anxiety severity phenotype based on a two-item instrument in a 

slightly smaller sample size (N=199,611) yielded four additional SNPs33. Overall, GWAS of 

dimensional phenotypes have been fruitful, collectively revealing hundreds of novel SNPs 

associated with psychiatric disorders.

The impact of phenotype definition on SNP-based heritability is less clear. Case-control 

phenotypes have occasionally resulted in higher SNP-based heritability estimates. In a 

depression GWAS, a diagnosis phenotype had an estimated hSNP=0.113, self-reported 

diagnosis phenotype had hSNP=0.078, and dimensional depression severity phenotype 
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had hSNP=0.05534. Larger heritability estimates for case-control phenotypes relative to 

dimensional phenotypes are consistent with other depression GWAS8, 35 as well as anxiety 

disorders33. Jermy and colleagues (2021) showed a dimensional phenotype calculated from 

fifteen symptoms of depression increased the SNP-based heritability by 1.4%, on average, 

relative to a dichotomous phenotype based only on cardinal symptoms, although a number 

of quantitative phenotypes did not markedly improve SNP-based heritability36. Many of 

these GWAS had similar sample sizes for dimensional and diagnostic phenotypes, hence 

these potential differences do not appear to be artifacts of discovery N.

It is important to note that most of studies cited above were based on population samples. 

For rare phenotypes—i.e., severe psychosis—oversampling for the pathological end of the 

dimension can increase the power of case-control designs26. However, little is known about 

how oversampling affects GWAS of dimensional phenotypes. If, for example, the sum of 

ratings on the Young Mania Rating Scale37 were used instead of DSM-defined bipolar 

disorder, oversampling for bipolar disorder cases might also increase quantitative GWAS 

power in a way that is not accounted for in the simulations reported in Yang, Wray, and 

Visscher (2010).

Convergent Validity

Dimensional phenotype GWAS often have strong genetic correlations with case-control 

GWAS of the same construct, implying convergent validity between the two. A recent study 

used three depression phenotypes in GWAS of comparable sample sizes: an ICD code-based 

algorithm derived from electronic health records, a self-reported physician diagnosis, and a 

dimensional symptom scale34. Genetic correlations among these three definitions were high 

(rg>.88). In the two largest PTSD GWAS to date, genetic correlations between dimensional 

and case-control (diagnostic) phenotypic definitions were very strong, nearing 1.0031, 32.

The data from substance use disorders similarly indicates convergent validity between 

dimensional and case-control phenotypes. Self-reported problematic alcohol use is 

moderately genetically correlated with alcohol dependence (rg=0.63)38. The degree to which 

dimensional phenotypes align with case-control phenotypes is likely moderated by the 

source of information (see section: Source of Information). The close correlation between 

alcohol use and alcohol dependence might be in part due to the data for both phenotypes 

being most often derived from an individual’s self-report.

Table 1 reports genetic correlations between selected corresponding dimensional and 

diagnostic phenotypes of comparable sample size, to illustrate convergent validity—

moderate to high correlations between different measures of conceptually similar 

phenotypes—and discriminant validity—low correlations between measures of conceptually 

distinct phenotypes. In general, correlations between similar phenotypes are moderate to 

very strong. The genetic correlation between a dimensional measure of PTSD symptoms31 

and a PTSD diagnosis39 (rg=0.92) is very strong, and the correlation between a dimensional 

measure of problematic alcohol use38 and alcohol use disorder40 (rg=0.71) is strong, in 

line with published findings. This pattern holds even between a higher-order dimensional 

phenotype, such as neuroticism41, and a specific diagnosis such as MDD42 (rg=0.68; see 

the section on “Lumping and Splitting” for discussion of higher-order phenotypes). Some 
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diagnoses and symptoms that do not correspond directly are very strongly correlated, e.g. 

rg=0.95 between PTSD39 and symptoms of anxiety33, which reflect the expected pleiotropy, 

as well as the heterogeneity of diagnoses and limitations of “minimal phenotypes”.

In some cases, non-diagnostic phenotypes have shown poor convergence with case-control 

phenotypes. Frist, a GWAS of “minimal phenotypes” of depression, i.e. assessments 

comprising just a few items, was critiqued as identifying non-specific loci43, 44. However, 

it is important to distinguish between phenotype conceptualization and phenotype 

operationalization. Reliability is determined by phenotype operationalization, which places 

an upper limit on validity. Minimal phenotypes—whether dimensional, such as a few items 

assessing depression, or dichotomous, such as self-reported diagnosis or diagnoses obtained 

from electronic medical records—are likely to be less reliable, and the resulting GWAS will 

have lower specificity, and consequently lower validity. Second, initial GWAS of a subset 

of items from the alcohol use disorders Identification Test (AUDIT)45 measuring alcohol 

consumption had only low to moderate convergence with alcohol use disorder40. Subsequent 

item-level modeling revealed that one item captured socially-stratified differences in alcohol 

use behavior rather than the alcohol phenotypes of clinical interest46. GWAS using an 

empirically-derived consumption score found high convergence with alcohol use disorder46, 

indicating that scale psychometrics may change when investigated at the genetic level, 

necessitating revised scoring for GWAS.

Third, GWAS of self-reported psychosis-like experiences in adolescents, positive symptoms, 

cognitive problems, and both self- and parent-reported negative symptoms resulted in small 

genetic correlations with schizophrenia47. Some domains of psychosis-like experiences 

were negatively correlated with bipolar disorder, in contrast to the strong positive genetic 

correlations observed between the schizophrenia and bipolar disorder diagnostic GWAS48. 

In this case, weak genetic correlations may be attributable to partially differential genetic 

liabilities underlying psychopathology across development (see “Longitudinal Phenotypes”, 

below), as well as imperfect phenotypic correspondence between individual symptom 

dimensions and heterogeneous diagnoses. For example, the schizophrenia diagnosis 

comprises several major symptom dimensions, including reality distortion, unusual 

psychosis-like experiences, dissociation, anhedonia, and emotional detachment49, hence the 

genetic liability for a single symptom domain will only partially overlap with genetic risk for 

the diagnostic category.

Source of Information

Quantitative and transdiagnostic phenotypes can reflect information from an array of 

sources, including friends, significant others, parents, teachers, and most commonly, self-

report. A common concern about such phenotypes is that some clinical phenomena may not 

be accurately measured via self-report. The differences between self-reported and clinician-

rated psychopathology, and their implications for gene discovery, is a topic requiring more 

research. In some disorders, such as psychotic disorders, lack of insight is common, and 

interviewer-rated symptoms may capture psychopathology that self-reports do not. In a 

population sample, however, a GWAS of self-reported psychotic experiences identified two 

genome-wide significant associations50. Genetic correlation analysis identified significant 
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genetic correlations between psychotic experiences and MDD (rg=0.46), autism spectrum 

disorder (rg=0.39), ADHD (rg=0.24), and schizophrenia (rg=0.21), and a PRS for 

self-reported psychotic symptoms was associated with development of psychosis in a 

longitudinal cohort. The sparse self-report data may explain non-specific associations 

between self-reported psychotic symptoms and psychiatric disorders. Results may also be 

affected by excluding individuals with psychotic disorders from the analysis. Regardless, 

these results suggest the GWAS of self-reported psychotic experiences identified novel loci 

with some relevance to psychopathology broadly, and perhaps psychosis specifically. This 

hints at the potential of self-reported symptoms to capture the same genetic vulnerability to 

psychopathology as diagnostic data.

In some cases, self-report may be more valid than informant report. Pain et al. (2018) 

showed that self-reported anhedonia was more heritable than parent-rated negative 

symptoms,47 and self-reported internalizing symptoms were more heritable than informant-

reported symptoms51. This may be because internal mood states are generally considered 

more amenable to self-report than informant report52, 53. Similarly, psychopathology and 

traits that are highly stigmatized, unlawful, taboo, or that may not be readily observable

—e.g. theft—are more amenable to self-report than informant-report54, 55. Conversely, in 

contexts where individuals are motivated to respond normatively, informant-reports can be 

more useful than self-report56.

The relative utility of self- and informant-report data has been carefully studied in 

twin research, which find genetic convergence between informant- and self-report. Twin 

studies suggest that different informants appear to measure a largely common genetic 

liability, but there are also rater-specific genetic effects57-59. Accordingly, a GWAS of 

childhood aggressive behavior found that SNP-based heritability ranged from 4% for 

father-report to 8% for teacher-report60. Genetic correlations between informants ranged 

from rg=0.46 between self- and teacher-assessment to rg=0.81 between mother- and teacher-

assessment (phenotypic correlations among raters ranged between 0.22 and 0.65), and 

genetic correlations with other forms of psychopathology were moderated by informant. 

These findings need to be replicated in other molecular genetic analyses, but show promise 

for aggregating data across multiple sources61. In sum, the optimal source, or sources, of 

information vary between forms of psychopathology and assessment contexts.

Biological & Behavioral Phenotypes

Biological, especially neurological, and behavioral phenotypes show promise as targets 

for GWAS. Endophenotypes are intermediate phenotypes between genetic risk and 

psychopathology that are independent of illness state62, 63. Because endophenotypes are 

theoretically “closer to the gene”, it has been hypothesized that their genetic underpinnings 

are less polygenic and less influenced by environment than psychiatric diagnoses, and 

therefore constitute a more powerful GWAS phenotype. These hypotheses continue being 

studied, but some endophenotypes’ utility for gene discovery is supported by comparisons 

of the genetic architecture of psychiatric, neurological, and structural traits64, 65. GWAS of 

Alzheimer’s disease and stroke endophenotypes, even of relatively small sample size (N= 

3,146 and 2,471, respectively), have identified significant loci that converge with larger 
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GWAS of those disorders66-68. Endophenotypes of schizophrenia, e.g. oculomotor inhibition 

and directed attention measured on the antisaccade task, 69 and alcohol dependence, e.g. fast 

beta (20–28 Hz) electroencephalogram (EEG) oscillatory activity 70, show similar promise, 

as have biomarkers such as chronotype71.

Biological and behavioral phenotypes need not be mediators between genetic risk and 

psychopathology to function as useful targets for GWAS. Some endophenotypes might 

simply be more feasible to collect than clinical data, or might serve as more objective 

and reliable markers of psychopathology than self-report, as discussed in sections above. 

Cotinine, a nicotine metabolite, may be a more accurate endophenotype than self-reported 

tobacco use, if differences in body mass and metabolism confound self-reported severity 

measures such as packs-per-day. Indeed, cotinine GWAS have identified several significant 

associations72, 73, despite relatively small sample sizes (N=5,185 and 4,548). Relatively 

common behaviors and normal personality traits can also serve as GWAS endophenotypes, 

because individual differences in such behaviors can be markers of vulnerability to 

psychopathology74-76. For example, risk-taking behavior is not necessarily pathological, 

but it is useful both in predicting and understanding mental health problems such as alcohol 

use disorder or conduct disorder. Analyses of the risk-taking PGS in validation samples has 

revealed links between risk-taking and altered neuroanatomy, which may ultimately inform 

the understanding of externalizing disorders such as addiction.77 Other endophenotypes 

relevant to psychiatric conditions that were successfully employed in GWAS include 

disinhibition and number of sexual partners74, loneliness and social withdrawal78, 79, 

subjective well-being21, and employment in leadership roles80 .

Ultimately, the utility of biological and behavioral phenotypes for psychiatric GWAS will 

depend on the association between those phenotypes and psychopathology. However, early 

GWAS of phenotypes at multiple levels of analysis have resulted in novel genetic findings 

and constitute valuable additions to diagnostic GWAS. This suggests that endophenotypes 

will continue to constitute a powerful approach to identifying loci associated with complex 

psychiatric traits, and should be included in data collection for GWAS.

Course of Illness Phenotypes

Longitudinal phenotypes allow the stable ‘trait’ element of psychopathology to be 

investigated separately from the ‘state’ element to increase power for genetic discovery. 

As first demonstrated in twin studies, phenotypes reflecting temporal stability or 

agreement over measures have a higher heritability than phenotypes measured at individual 

assessments81, 82. In molecular genetic research, Cheesman et al.61 observed an analogous 

phenomenon. SNP-based heritability estimates increased from an average of 5% (not 

significant) for individual state measures to 14% (p=0.002) for an emotional problems 

trait constructed from 12 measures spanning 9 years. This is consistent with the view 

that genetics constitute core vulnerability to psychopathology that is best captured by 

stable, trait-like phenotypes. Time-specific phenotypes are more likely to be under transient 

environmental influences and have lower assessment reliability (i.e., more measurement 

error). Furthermore, cross-sectional assessments of rare, episodic phenotypes such as mania 
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likely miss substantial variance. The frequency of mania appears to be a more robust 

indicator of genetic risk than cross-sectional measures of psychosis or mania83.

Longitudinal phenotypes can also take the form of temporal illness features. Age of onset 

has been shown to be an indicator of genetic risk for depression84, and when used as 

moderator, can increase GWAS power. Incorporating age of onset of ADHD revealed 

additional genome-wide significant associations, relative to a case-control design that did 

not account for age of onset85. Moreover, a recent GWAS found that SNP-based heritability 

was three times higher for early-onset MDD (onset at or before age 30) as compared to 

late-onset MDD (onset at or after age 44, hSNP=0.130 vs 0.043, respectively)86. Similarly, 

MDD with recurrent features may be more heritable than single episode MDD (hSNP=0.107 

vs 0.082, respectively). Finally, GWAS stratified by these temporal features identified 

additional six genome-wide significant loci (3 loci for early-onset MDD and 3 loci for 

recurrent MDD)89. While some GWAS, e.g., schizophrenia and anorexia nervosa age of 

onset GWAS, have not identified significant associations87, 88, this may be attributable to 

small sample sizes.

Treatment resistance is another clinical feature that has resulted in new genetic discoveries. 

Treatment-resistant depression might be more heritable than non-treatment-resistant 

depression (hSNP=0.23 vs 0.17, respectively)89. The correlation between the two depression 

phenotypes is significantly different from 1 (rg=0.78), suggesting that although the 

two phenotypes are closely related, treatment resistance could provide novel genetic 

signal. Similarly, a GWAS of treatment resistant schizophrenia is useful not only as an 

additional phenotype with potential clinical utility90, but also because it may be a more 

precise phenotype for identifying distinct etiological pathways. Variants increasing risk 

for treatment resistant schizophrenia may indicate a parallel pathway to psychosis that is 

non-overlapping with the dopaminergic pathway modulated by antipsychotics.

Longitudinal analyses can also inform our understanding of how genetic architecture 

changes over the lifespan. Cheesman et al. 61 demonstrated that stable emotional problems 

in youth had only a moderate genetic correlation with adult depression and anxiety (average 

rg=0.52), implying distinct genetic liabilities at different ages. However, genetic risk for 

antisocial behavior based on GWAS performed in adults was associated with several 

antisocial outcomes across the lifespan91. Such comparisons could reveal how genetic risk 

changes or persists over development. However, there is a disconnect between GWAS in 

youth and adult samples. Studies of adults lack a life-course lense, and for many phenotypes 

GWAS in youth and adults are conducted by independent consortia—e.g. GWAS of 

antisocial behavior in adults91 and GWAS of childhood aggressive behavior60. Connections 

between these findings remain to be explored. For many phenotypes (e.g. PTSD), GWAS in 

child and adolescent samples do not yet exist.

Phenotype/Sample Interactions

For both quantitative and diagnostic phenotypes, it is important to consider how 

phenotype operationalization affects sample selection, and how any selection bias impacts 

subsequent GWAS. Case-control designs often use super-healthy controls, e.g. controls 

screened for the target and related phenotypes. Controls typically differ from cases 
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on characteristics unrelated to the psychopathology of interest, such as intelligence, 

socio-economic status, and co-occurring mental health symptoms92-94. Such artifacts 

tend to be magnified when super-healthy controls are additionally screened for related 

psychopathology, or psychopathology among relatives. Use of such super-healthy control 

groups substantially inflates genetic correlations between traits95. Furthermore, individuals 

with severe symptoms experience more functional impairment, psychiatric, somatic, and 

physical comorbidities, and other burdens. These phenotypes are different from the trait 

of interest, but might be included in its measurement, e.g., impairment is often required 

to derive a clinical diagnosis in a case-control design, but may have distinct genetic risk 

factors, operating as an unmeasured confounder. Because there is no need to define groups 

for dimensional GWAS, samples may naturally be more heterogeneous, avoiding this source 

of confounding.

However, quantitative phenotypes are not immune from selection bias. Phenotypes collected 

through online portals require individuals have access to a smartphone or computer, and 

some degree of technological literacy. In UK Biobank, Mendelian randomization analyses 

indicate neuroticism and schizophrenia decreased the odds of participation in optional 

assessments, including a mental health questionnaire96. Consent to have one’s 23 and 

Me data used for research is non-random97, 98, but it is difficult to study how this 

affects the resulting GWAS, as doing so would require performing research on individuals 

who have opted out of research. Illness course phenotypes are only identified among 

symptomatic individuals. The effect of such selection on power for gene discovery is 

unclear. Alternatively, it may be possible to collect behavioral phenotypes for individuals 

whose symptoms are too severe to allow for completion of a structured interview, reducing 

selection bias. In sum, failure to account for the factors affecting study participation can lead 

to spurious associations and incorrect biological inferences99, regardless of phenotype.

Transdiagnostic versus Specific Phenotypes

“Lumping” and “splitting” phenotypes into broader, transdiagnostic phenotypes and 

narrower, specific, constructs, respectively, may increase power for gene discovery by 

capitalizing on patterns of genetic covariance. Transdiagnostic phenotypic targets are 

consistent with a longstanding hypothesis that patterns of phenotypic covariance mimic 

patterns of genetic covariance100. This hypothesis has first been supported in the literature 

on plant and animal genomics and has been observed for most psychological traits 

observed in humans101. The “lumping” and “splitting” approaches result in hierarchical 

phenotypes that are based on longstanding empirical evidence that psychopathology’s 

genetic architecture is also hierarchical, with some genes influencing broad (i.e., higher-

order) psychiatric phenotypes and others a specific (i.e., lower-order) phenotype102-106.

The “lumping” approach may be particularly useful when there is evidence that a general 

phenotype is more heritable than the specific phenotype. In the case of intelligence, the 

heritability of individual subtests, e.g. working memory, is largely explained by general 

intelligence107. Accordingly, a general intelligence GWAS in a modestly sized sample 

(N=35,298) returned a relatively high SNP-based heritability of 0.22108. An analysis 

of multiple cognitive phenotypes within the UK Biobank data is also informative109. 
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Participants completed a tests of fluid intelligence, visual memory, and reaction time, all of 

which were approximately equal in length. The SNP-based heritability of fluid intelligence 

was 0.31, while the heritability of reaction time was 0.11 and visual memory was 0.05. The 

fluid intelligence phenotype was much more heritable than that for the specific cognitive 

abilities, despite the sample size for this phenotype being less than one-third that of 

specific phenotypes. It is difficult to disentangle the effects of test reliability, trait stability, 

and pleiotropy in these analyses, but each of these factors favors the use of higher-order 

phenotypes to improve statistical power for gene discovery.

Higher-order phenotypes may also be useful for moderately heritable but highly correlated 

phenotypes. Salient examples include anxiety disorders, which are highly genetically 

correlated in twin studies110-112. A genetic liability for anxiety may be shaped by specific 

environmental exposures (e.g., a dog bite, a trauma), resulting in any number of specific 

phobias in line with the general genes hypothesis113. Consistent with this hypothesis, the 

largest anxiety GWAS have combined all anxiety disorders to maximize sample size and 

power, akin to the fear factor33, 114-117. Notably, information is additive118. To the extent 

that any two measures of the same construct are correlated—that is, assess a common 

construct—a phenotype that combines data from both measures will be more powerful 

than either measure alone. The property underlies the utility of multi-trait methods such as 

genomic SEM102 and multi-trait analysis of GWAS (MTAG)119, when multiple phenotypes 

are available for the same individuals. Higher-order phenotypes may be especially useful 

in conditions with significant heterotypic continuity, such as eating disorders, in which 

high genetic risk may manifest as any number of different behaviors—binge eating, 

restricting, purging—over time120-123. More generally, due to shifts among different 

successive disorders124, a higher-order general psychopathology factor (p-factor) may serve 

as a phenotype that captures genetic vulnerability to psychopathology across the lifespan. 

Higher-order phenotypes have more often been statistically inferred than measured directly 

using a dedicated instrument. That is, rather than assessing internalizing directly, genetic risk 

for internalizing is quantified through genetic covariance among more specific internalizing 

phenotypes, such as depression, anxiety, and PTSD, using genomic SEM102, 103, 125 as 

well as other meta-analytic approaches such as MTAG119. Given the parallels between 

phenotypic and genetic patterns of covariance, these two approaches should converge. Box 1 

discusses results from genomic SEM as an indication of how higher-order phenotypes may 

be useful targets for GWAS.

If specific phenotypes are heterogeneous, “splitting” may be a preferred approach to capture 

additional lower-order influences. Indeed, GWAS of individual items from a dimensional 

depression measure (Patient Health Questionnaire-9; PHQ-9)126 yielded 7 associations as 

compared to 4 obtained using the sum-score127. Results revealed genetic heterogeneity 

in depressive symptoms with no overlap in significant loci across PHQ-9 items. Genetic 

correlations between depressive symptoms ranged from moderate (rg<0.60) to very strong 

(rg>0.90). The underlying genetic structure between symptoms was best explained by two 

very strongly correlated genetic factors: psychological and somatic (rg=0.93). In a similar 

analysis, a set of GWAS of 16 clinically-informed MDD phenotypes (e.g. MDD with 

suicidal thoughts, postpartum depression) identified 47 independent genomic loci, a third of 

which were undetected in the latest MDD GWAS, despite that analysis having five times 
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more cases86. Most notably, MDD with vegetative (i.e., atypical) features showed only a 

moderate genetic correlation with MDD without vegetative features (rg=0.55), indicating 

considerable unique genetic etiology of these two subtypes. Moreover, MDD with vegetative 

features showed a moderate positive genetic correlation with BMI (rg=0.40) while non-

vegetative MDD had a negligible correlation with BMI (rg=−0.09). In sum, “splitting” the 

depression phenotype suggests that while some symptoms have high genetic overlap, a 

considerable amount of genetic variation is unique rather than shared, and ‘split’ phenotypes 

can be useful for detecting these liabilities. The “splitting” approach to phenotyping has 

also been successfully implemented for gene discovery in OCD128 and autism spectrum 

disorder129, 130.

“Splitting” can also be useful in identifying genetic liability to specific components 

which are observed transdiagnostically, such as anhedonia131. This narrow phenotype 

had significant SNP-based heritability and positive genetic correlations with MDD, 

schizophrenia, and bipolar disorder—diagnoses in which anhedonia is often observed. 

Similarly, a GWAS of suicide death has demonstrated suicide is heritable (.16 on the liability 

scale), and identified genetic variants shared between suicide death and schizophrenia, 

bipolar disorder, and autism132. Furthermore, a recent study conducted GWAS of 

data-driven PTSD subscales: re-experiencing, hyperarousal, and avoidance31. Although 

PTSD subscales demonstrated very strong genetic correlations (rg>0.90), supporting the 

importance of a general genetic vulnerability to PTSD, genomic SEM showed that 

hyperarousal had a unique genetic association with MDD, anxiety, and neuroticism, hinting 

at transdiagnostic pathways linking these diagnoses.

“Splitting” can also be a useful approach for identifying methodological artifacts in GWAS. 

In an alcohol use GWAS, items measuring alcohol consumption was closely related 

to socioeconomic status, whereas a distinct subset measuring alcohol-related problems 

better captures variance shared with pathological consumption46. This finding explained 

paradoxical genetic correlations between alcohol use disorder and better physical health38. 

Future GWAS could take the “splitting” approach to study whether other related phenotypes 

such as impairment or stressful life events have separate genetic underpinnings from 

psychopathology.

In conclusion, lumping can increase statistical power in contexts where genetic risk 

increases psychopathology at the broadest level, or in cases of true pleiotropy. “Splitting”, 

however, may increase power to detect additional genetic risk, including the instances 

when specific symptoms or traits are observed across multiple heterogeneous phenotypes. 

Simulations evaluating how lumping and splitting capture genetic risk across a variety of 

genetic architectures would be informative for the design of future phenotyping efforts.

Quantifying Genetic Risk versus Gene Discovery

The choice of target phenotypes for GWAS is not a purely statistical decision, but one that 

depends on the GWAS’s purpose. If the purpose of performing a GWAS is to develop a 

PGS of automobile speeding propensity, the best predictor may be a GWAS of automobile 

speeding propensity74. However, if the GWAS for the target phenotype is based on a small 

sample size, a related phenotype for which a larger sample size exists will likely produce a 
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more powerful PGS. For example, a PGS from the recent externalizing GWAS125 predicts 

opioid use disorder, a phenotype that was not part of the externalizing GWAS and has not 

been associated with opioid use disorder PGS, as discussed in Box 1. Because information 

is additive, and psychiatric traits tend to be both phenotypically and genetically correlated, 

the best way to improve prediction may be to use multiple PGS for related phenotypes. 

Likewise, PGS for anthropometric traits are currently more closely associated with eating 

disorders than the PGS based on GWAS for anorexia nervosa133, and PGS of traits emerging 

in late adolescence or adulthood, such as substance abuse, can nonetheless predict important 

outcomes among children, or other populations in which the phenotype is not observed.

However, GWAS are not purely for the purposes of developing PGS, but also gene discovery 

and understanding etiology. For instance, a recent analysis of polygenic risk for PTSD and 

lifetime trauma exposure determined that, while genetic risk for PTSD is partially explained 

by genetic risk for trauma, PTSD also has some unique genetic risk that is correlated 

with neuroticism and irritability, indicating an alternative pathway to pathology that is not 

necessarily via trauma32. Relatedly, PTSD was significantly more genetically correlated 

with recurrent MDD than with MDD in individuals not reporting trauma, likely because 

individuals with recurrent MDD experience more traumatic events and, hence, might 

share genetic vulnerability to trauma exposure134. If the aim of a proposed GWAS is to 

inform genetic pathways and downstream biological mechanisms for a specific psychiatric 

phenotype, a corresponding dimension, perhaps refined using the “splitting” approach, will 

likely be the optimal phenotype.

Measuring Dimensional and Transdiagnostic Phenotypes

While genomic SEM and other meta-analytic approaches such as MTAG119 infer 

empirically-based transdiagnostic phenotypes, they depend on re-analysis of existing data 

and can therefore be constrained. For example, negative symptoms drive psychosocial 

impairment in psychotic disorders135, and a negative symptoms GWAS would be of 

utility for etiological and translational research. However, genomic SEM has not identified 

a negative symptom factor, and without directly phenotyping negative symptoms, it 

may not be possible to capture genetic variants contributing to this important outcome. 

For negative symptoms and other dimensional, transdiagnostic phenotypes, empirically-

validated classification systems can provide useful targets for gene discovery at every level 

of specificity136. Below, we highlight two systems that may be particularly well-suited for 

informing the assessment of mental health phenotypes for molecular genetic research.

First, the Hierarchical Taxonomy of Psychopathology (HiTOP) consortium proposed a data-

driven phenotypic classification system for a wide range of psychiatric disorders136-138. 

The methods used to identify the structure of psychiatric phenotypes within the HiTOP 

model are equivalent to the structural equation modelling methods that are used to identify 

the structure of genetic risk in genomic SEM as well as in multivariate twin studies. The 

phenotypic hierarchy in the HiTOP model makes comorbidity an explicit and predictable 

feature by classifying related phenotypes together into higher-order factors: superspectra 

of emotional dysfunction 139, externalizing140, and psychosis 49; subfactors such as fear, 

distress, mania, sexual problems and eating pathology within emotional dysfunction 139. 
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Moreover, the phenotypes in the HiTOP model are dimensional, in order to capture 

the continuous variation of mental health problems across all levels of specificity (i.e., 

“lumping” and “splitting”).

The National Institute of Mental Health developed the Research Domain Criteria (RDoC) 

model to guide research on the neurobiological bases of psychopathology. RDoC provides 

another toolbox of novel phenotypes141-143. RDoC phenotypes are organized around 

dimensional biobehavioral systems that cross diagnostic boundaries in a similar way to 

the higher-order genomic SEM phenotypes. Although RDoC is not hierarchical, each system 

contains narrow phenotypic constructs and subconstructs that “split” each system. The 

Negative Valence Systems, for example, consists acute threat, potential threat, sustained 

threat, loss, and frustrative nonreward. Each construct/subconstruct is transdiagnostic, e.g., 

acute threat characterizes a wide range of disorders such as OCD, panic, and PTSD. 

Although HiTOP and RDoC models come from different research traditions, they have many 

commonalities and points of convergence144.

Conclusion

In recent years, psychiatric genetics research has incorporated a wide range of phenotypic 

targets to enhance genetic discovery. Some of the most promising options are dimensional 

and transdiagnostic measures, assessing constructs at varying levels of analysis that are 

empirically derived from our understanding of symptom co-occurrence. Other effective 

phenotypic targets incorporate novel sources of information, such as collateral informants, 

longitudinal data, test performance, and biological measures.

A great deal remains unknown regarding how dimensional and transdiagnostic phenotypes 

compare to case-control designs. While simulations have been useful in understanding how 

case prevalence affects power of case-control designs, it is unknown how this manipulation 

affects quantitative phenotypes, which may also benefit from oversampling. More broadly, 

this review focuses on the impact of quantitative phenotypes for GWAS and gene discovery, 

rather than genetic prediction. A comparison of the phenotypic profile of quantitative and 

diagnostic PGS was beyond the scope of this review, despite its relevance to characterizing 

the utility of these phenotypes for gene discovery. We discussed prominent examples 

in which performing a GWAS of a broad phenotype in a population sample improved 

prediction of specific, rare phenotypes in validation samples. However, further research 

is needed on the conditions under which this phenomenon holds, and at what cost to 

precision. Similarly, longitudinal phenotypes are a nascent field of gene discovery. How 

to incorporate longitudinal data in a way that captures stability as well as change and 

heterotypic continuity is needed. Finally, this review has focused on discovering common 

genetic variants, rather than rare variants. We hypothesize that dimensional phenotypes will 

be especially informative in studying rare variants, because rare variants are more common 

in patients with severe psychopathology145-147, so power to detect rare variants should 

be enhanced by the ability to discriminate between cases of varying severity. Similarly, 

“lumping” may be useful for the discovery of rare variants, many of which increase risk for 

multiple forms of psychopathology (i.e., 16p11.2 duplication (MAPK3))147, 148. However, 

there is little research on this topic.
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Ultimately, exploring novel target phenotypes for psychiatric GWAS has the potential to 

accelerate gene discovery, increase our understanding of the etiology of mental illness, and 

improve the power and precision of genetic prediction.
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Box 1. –

Genomic SEM

Genomic structural equation modeling (SEM) studies identify patterns of genetic 

covariance among results from multiple GWAS. The findings to date suggest that many 

genes broadly influence liability to numerous psychiatric disorders102, 103, 125. In a 

prominent example, a GWAS of a broad, dimensional externalizing phenotype obtained 

using genomic SEM identified 579 genome-wide significant loci, 121 of which were not 

discovered in disorder-specific GWAS of any of the seven phenotypes comprising the 

broad externalizing125. Genetic risk for externalizing predicted many useful phenotypes 

in independent samples, including opioid use and suicide, phenotypes that have been 

difficult to predict even from GWAS specific to those phenotypes, although this enhanced 

discovery is driven at least in part by a much larger sample size of the genomic 

SEM-derived externalizing phenotype. Using a similar approach, a genomic SEM 

identified two transdiagnostic genetic factors, broadly corresponding to internalizing 

and thought disorder spectra, that in turn yielded novel and spectrum-specific loci in 

GWAS150. In an analysis that identified genetic risk at its broadest, the general factor 

of psychopathology, genomic SEM identified 128 loci with a sample size of 321,901102. 

Notably, a cross-disorder meta-analysis, which is equivalent to a case-control design 

on the same phenotype, yields around the same number of SNPs (136) with a much 

larger sample size of 727,1266. Taken together, phenotypes based on patterns of genetic 

covariance have the potential to increase the power of GWAS, as these phenotypes will 

parallel the structure of genetic influences. Consistent with these insights from genomic 

SEM, recent GWAS focus on phenotypes that represent major dimensions underlying 

numerous psychiatric conditions (e.g. the internalizing factor) 51, as well as on tight-knit 

lower-order phenotypes (e.g. anhedonia, suicidal ideation)86, 131, 151.
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Figure 1. Dimensional and Transdiagnostic GWAS Phenotypes Across the Lifespan
Note: Psychiatric phenotypes demonstrate temporal features such as age of onset 

and developmental trajectories, ‘state’ fluctuations around the ‘stable’ severity levels, 

recurrences, and treatment response. Many dimensional, transdiagnostic, and other non-

diagnostic phenotypes are well-suited to measuring such temporal features. Higher-order 

phenotypes such as the general factor of psychopathology (p-factor) can ‘lump’ symptom 

burden at a particular point in time. The most optimal sources of information may vary 

across the lifespan, e.g., externalizing behaviors might be assessed via informant-reports in 

childhood, and via self-reports and cotinine in adulthood.
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Figure 2 –. “Lumping” and “Splitting” of Dimensional GWAS Phenotypes
Note: Dimensional and transdiagnostic phenotypes can be measured using various sources 

of information, such as interview, self-reports, tissue samples, passive sensors, and other 

biological and behavioral markers. Variance (either phenotypic, or genetic if using genomic 

SEM) that is common to all measured phenotypes can be statistically “lumped” into a 

single higher-order phenotype, which can enhance GWAS power and result in discovery of 

pleiotropic SNPs. Simultaneously, variance that is unique to the measured phenotype can 

be statistically “split” into a lower-order phenotype, which can result in additional SNP 

discoveries with higher phenotype-specificity.
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